Benchmarks module

This module provides popular continual learning benchmarks and generic facilities to build custom benchmarks.
  • Popular benchmarks (like SplitMNIST, PermutedMNIST, SplitCIFAR, …) are contained in the classic sub-module.

  • Dataset implementations are available in the datasets sub-module.

  • One can create new benchmarks by using the utilities found in the generators sub-module.

  • Avalanche uses custom dataset and dataloader implementations contained in the utils sub-module. More info can be found in this couple of How-Tos here and here.

avalanche.benchmarks

Continual Learning Scenarios

Generic definitions for scenarios, streams and experiences. All the continual learning benchmarks are specific instantiations of these concepts.

Scenarios

CLScenario(streams)

Continual Learning benchmark.

OnlineCLScenario(original_streams[, ...])

ExModelCLScenario(original_benchmark, ...)

Ex-Model CL Scenario.

NCScenario(train_dataset, test_dataset, ...)

This class defines a "New Classes" scenario.

NIScenario(train_dataset, test_dataset, ...)

This class defines a "New Instance" scenario.

benchmark_with_validation_stream(benchmark)

Helper to obtain a benchmark with a validation stream.

Streams

CLStream(name, exps_iter[, benchmark, ...])

A CL stream is a named iterator of experiences.

EagerCLStream(name, exps[, benchmark, ...])

A CL stream build from a pre-initialized list of experience.

ClassificationStream(name, benchmark, *[, ...])

Experiences

CLExperience(current_experience, origin_stream)

Base Experience.

ClassificationExperience(origin_stream, ...)

Definition of a learning experience based on a GenericCLScenario instance.

NCExperience(origin_stream, current_experience)

Defines a "New Classes" experience.

NIExperience(origin_stream, current_experience)

Defines a "New Instances" experience.

OnlineCLExperience(*, dataset, origin_experience)

Online CL (OCL) Experience.

ExModelExperience(expert_model, ...[, ...])

Ex-Model CL Experience.

ExperienceAttribute(value[, use_in_train, ...])

Experience attributes are used to define data belonging to an experience which may only be available at train or eval time.

Classic Benchmarks

The classic benchmarks sub-module covers all mainstream benchmarks. Expect this list to grow over time!

Benchmarks based on the CORe50 dataset.

CORe50(*[, scenario, run, object_lvl, mini, ...])

Creates a CL benchmark for CORe50.

Benchmarks based on the CIFAR-10 and CIFAR-100 datasets.

SplitCIFAR10(n_experiences, *[, ...])

Creates a CL benchmark using the CIFAR10 dataset.

SplitCIFAR100(n_experiences, *[, ...])

Creates a CL benchmark using the CIFAR100 dataset.

SplitCIFAR110(n_experiences, *[, seed, ...])

Creates a CL benchmark using both the CIFAR100 and CIFAR10 datasets.

Benchmarks based on the Caltech-UCSD Birds 200 dataset.

SplitCUB200([n_experiences, ...])

Creates a CL benchmark using the Cub-200 dataset.

Benchmarks based on the EndlessCLSim derived datasets.

EndlessCLSim(*[, scenario, patch_size, ...])

Creates a CL scenario for the Endless-Continual-Learning Simulator's derived datasets, or custom datasets created from the Endless-Continual-Learning-Simulator's `standalone application < https://zenodo.org/record/4899294>`__.

Benchmarks based on the Fashion MNIST dataset.

SplitFMNIST(n_experiences, *[, ...])

Creates a CL benchmark using the Fashion MNIST dataset.

Benchmarks based on the ImageNet ILSVRC-2012 dataset.

SplitImageNet(dataset_root, *[, ...])

Creates a CL benchmark using the ImageNet dataset.

SplitTinyImageNet([n_experiences, ...])

Creates a CL benchmark using the Tiny ImageNet dataset.

Benchmarks based on the iNaturalist-2018 dataset.

SplitInaturalist(*[, super_categories, ...])

Creates a CL benchmark using the iNaturalist2018 dataset.

Benchmarks based on the MNIST dataset.

SplitMNIST(n_experiences, *[, ...])

Creates a CL benchmark using the MNIST dataset.

PermutedMNIST(n_experiences, *[, ...])

Creates a Permuted MNIST benchmark.

RotatedMNIST(n_experiences, *[, ...])

Creates a Rotated MNIST benchmark.

Benchmarks based on the Omniglot dataset.

SplitOmniglot(n_experiences, *[, ...])

Creates a CL benchmark using the OMNIGLOT dataset.

Benchmarks based on the OpenLORIS dataset.

OpenLORIS(*[, factor, train_transform, ...])

Creates a CL benchmark for OpenLORIS.

Benchmarks based on the Stream-51, dataset.

CLStream51(*[, scenario, seed, eval_num, ...])

Creates a CL benchmark for Stream-51.

Benchmarks based on the CLEAR dataset.

CLEAR(*[, data_name, evaluation_protocol, ...])

Creates a Domain-Incremental benchmark for CLEAR 10 & 100 with 10 & 100 illustrative classes and an n+1 th background class.

Benchmarks for learning from pretrained models or multi-agent continual learning scenarios. Based on the Ex-Model paper. Pretrained models are downloaded automatically.

ExMLMNIST([scenario, run_id])

ExML scenario on MNIST data.

ExMLCoRE50([scenario, run_id])

ExML scenario on CoRE50.

ExMLCIFAR10([scenario, run_id])

ExML scenario on CIFAR10.

Datasets

The datasets sub-module provides PyTorch dataset implementations for datasets missing from the torchvision/audio/* libraries. These datasets can also be used in a standalone way!

CORe50Dataset(root, *[, train, transform, ...])

CORe50 Pytorch Dataset

CUB200(root, *[, train, transform, ...])

Basic CUB200 PathsDataset to be used as a standard PyTorch Dataset.

EndlessCLSimDataset([root, scenario, ...])

Endless Continual Leanring Simulator Dataset

INATURALIST2018([root, split, transform, ...])

INATURALIST Pytorch Dataset

MiniImageNetDataset(imagenet_path, split, , ...)

The MiniImageNet dataset.

Omniglot(root[, train, transform, ...])

Custom class used to adapt Omniglot (from Torchvision) and make it compatible with the Avalanche API.

OpenLORIS(root, *[, train, transform, ...])

OpenLORIS Pytorch Dataset

Stream51(root, *[, train, transform, ...])

Stream-51 Pytorch Dataset

TinyImagenet(root, *, train[, transform, ...])

Tiny Imagenet Pytorch Dataset

CLEARDataset([root, data_name, download, ...])

CLEAR Base Dataset for downloading / loading metadata

Datasets of audio sequences from TorchAudio.

torchaudio_wrapper.SpeechCommands([root, ...])

root: dataset root location url: version name of the dataset download: automatically download the dataset, if not present subset: one of 'training', 'validation', 'testing' mfcc_preprocessing: an optional torchaudio.transforms.MFCC instance to preprocess each audio. Warning: this may slow down the execution since preprocessing is applied on-the-fly each time a sample is retrieved from the dataset.

Benchmark Generators

The generators sub-module provides a lot of functions that can be used to create a new benchmark.
This set of functions tries to cover most common use cases (Class/Task-Incremental, Domain-Incremental, …) but it also allows for the creation of entirely custom benchmarks (based on lists of tensors, on file lists, …).

nc_benchmark(train_dataset, test_dataset, ...)

This is the high-level benchmark instances generator for the "New Classes" (NC) case.

ni_benchmark(train_dataset, test_dataset, ...)

This is the high-level benchmark instances generator for the "New Instances" (NI) case.

dataset_benchmark(train_datasets, ...[, ...])

Creates a benchmark instance given a list of datasets.

filelist_benchmark(root, train_file_lists, ...)

Creates a benchmark instance given a list of filelists and the respective task labels.

paths_benchmark(train_lists_of_files, ...[, ...])

Creates a benchmark instance given a sequence of lists of files.

tensors_benchmark(train_tensors, test_tensors, *)

Creates a benchmark instance given lists of Tensors.

Avalanche offers utilities to adapt a previously instantiated benchmark object.
More utilities to come!

data_incremental_benchmark(...[, shuffle, ...])

High-level benchmark generator for a Data Incremental setup.

Utils (Data Loading and AvalancheDataset)

The custom dataset and dataloader implementations contained in this sub-module are described in more detailed in the How-Tos about “data loading and replay” <https://avalanche.continualai.org/how-tos/dataloading_buffers_replay> and “Avalanche Dataset” <https://avalanche.continualai.org/how-tos/avalanchedataset>.

TaskBalancedDataLoader(data[, batch_size, ...])

Task-balanced data loader for Avalanche's datasets.

GroupBalancedDataLoader(datasets[, ...])

Data loader that balances data from multiple datasets.

ReplayDataLoader(data[, memory, ...])

Custom data loader for rehearsal/replay strategies.

GroupBalancedInfiniteDataLoader(datasets[, ...])

Data loader that balances data from multiple datasets emitting an infinite stream.

AvalancheDataset(datasets, *[, indices, ...])

Avalanche Dataset.

make_avalanche_dataset(dataset, *[, ...])

Avalanche Dataset.

TaskSet(data)

A lazy mapping for <task-label -> task dataset>.

DataAttribute(data, name[, use_in_getitem])

Data attributes manage sample-wise information such as task or class labels.