class avalanche.training.plugins.LRSchedulerPlugin(scheduler, reset_scheduler=True, reset_lr=True)[source]

Learning Rate Scheduler Plugin.

This plugin manages learning rate scheduling inside of a strategy using the PyTorch scheduler passed to the constructor. The step() method of the scheduler is called after each training epoch.

__init__(scheduler, reset_scheduler=True, reset_lr=True)[source]

Creates a LRSchedulerPlugin instance.

  • scheduler – a learning rate scheduler that can be updated through a step() method and can be reset by setting last_epoch=0

  • reset_scheduler – If True, the scheduler is reset at the end of the experience. Defaults to True.

  • reset_lr – If True, the optimizer learning rate is reset to its original value. Default to True.


__init__(scheduler[, reset_scheduler, reset_lr])

Creates a LRSchedulerPlugin instance.

after_backward(strategy, **kwargs)

Called after criterion.backward() by the BaseStrategy.

after_eval(strategy, **kwargs)

Called after eval by the BaseStrategy.

after_eval_dataset_adaptation(strategy, **kwargs)

Called after eval_dataset_adaptation by the BaseStrategy.

after_eval_exp(strategy, **kwargs)

Called after eval_exp by the BaseStrategy.

after_eval_forward(strategy, **kwargs)

Called after model.forward() by the BaseStrategy.

after_eval_iteration(strategy, **kwargs)

Called after the end of an iteration by the BaseStrategy.

after_forward(strategy, **kwargs)

Called after model.forward() by the BaseStrategy.

after_train_dataset_adaptation(strategy, ...)

Called after train_dataset_adapatation by the BaseStrategy.

after_training(strategy, **kwargs)

Called after train by the BaseStrategy.

after_training_epoch(strategy, **kwargs)

Called after train_epoch by the BaseStrategy.

after_training_exp(strategy, **kwargs)

Called after train_exp by the BaseStrategy.

after_training_iteration(strategy, **kwargs)

Called after the end of a training iteration by the BaseStrategy.

after_update(strategy, **kwargs)

Called after optimizer.update() by the BaseStrategy.

before_backward(strategy, **kwargs)

Called before criterion.backward() by the BaseStrategy.

before_eval(strategy, **kwargs)

Called before eval by the BaseStrategy.

before_eval_dataset_adaptation(strategy, ...)

Called before eval_dataset_adaptation by the BaseStrategy.

before_eval_exp(strategy, **kwargs)

Called before eval_exp by the BaseStrategy.

before_eval_forward(strategy, **kwargs)

Called before model.forward() by the BaseStrategy.

before_eval_iteration(strategy, **kwargs)

Called before the start of a training iteration by the BaseStrategy.

before_forward(strategy, **kwargs)

Called before model.forward() by the BaseStrategy.

before_train_dataset_adaptation(strategy, ...)

Called before train_dataset_adapatation by the BaseStrategy.

before_training(strategy, **kwargs)

Called before train by the BaseStrategy.

before_training_epoch(strategy, **kwargs)

Called before train_epoch by the BaseStrategy.

before_training_exp(strategy, **kwargs)

Called before train_exp by the BaseStrategy.

before_training_iteration(strategy, **kwargs)

Called before the start of a training iteration by the BaseStrategy.

before_update(strategy, **kwargs)

Called before optimizer.update() by the BaseStrategy.