avalanche.evaluation.metrics.detection.DetectionMetrics
- class avalanche.evaluation.metrics.detection.DetectionMetrics(*, evaluator_factory: ~typing.Callable[[~typing.Any, ~typing.List[str]], ~avalanche.evaluation.metrics.detection.DetectionEvaluator] = <class 'avalanche.evaluation.metrics.detection_evaluators.coco_evaluator.CocoEvaluator'>, gt_api_def: ~typing.Sequence[~typing.Tuple[str, ~typing.Union[~typing.Tuple[~typing.Type], ~typing.Type]]] = (('coco', <class 'pycocotools.coco.COCO'>), ('lvis_api', <class 'lvis.lvis.LVIS'>)), default_to_coco=False, save_folder=None, filename_prefix='model_output', save_stream='test', iou_types: ~typing.Union[str, ~typing.List[str]] = 'bbox', summarize_to_stdout: bool = True)[source]
Metric used to compute the detection and segmentation metrics using the dataset-specific API.
Metrics are returned after each evaluation experience.
This metric can also be used to serialize model outputs to JSON files, by producing one file for each evaluation experience. This can be useful if outputs have to been processed later (like in a competition).
If no dataset-specific API is used, the COCO API (pycocotools) will be used.
- __init__(*, evaluator_factory: ~typing.Callable[[~typing.Any, ~typing.List[str]], ~avalanche.evaluation.metrics.detection.DetectionEvaluator] = <class 'avalanche.evaluation.metrics.detection_evaluators.coco_evaluator.CocoEvaluator'>, gt_api_def: ~typing.Sequence[~typing.Tuple[str, ~typing.Union[~typing.Tuple[~typing.Type], ~typing.Type]]] = (('coco', <class 'pycocotools.coco.COCO'>), ('lvis_api', <class 'lvis.lvis.LVIS'>)), default_to_coco=False, save_folder=None, filename_prefix='model_output', save_stream='test', iou_types: ~typing.Union[str, ~typing.List[str]] = 'bbox', summarize_to_stdout: bool = True)[source]
Creates an instance of DetectionMetrics.
- Parameters
evaluator_factory – The factory for the evaluator to use. By default, the COCO evaluator will be used. The factory should accept 2 parameters: the API object containing the test annotations and the list of IOU types to consider. It must return an instance of a DetectionEvaluator.
gt_api_def – The name and type of the API to search. The name must be the name of the field of the original dataset, while the Type must be the one the API object. For instance, for
LvisDataset
is (‘lvis_api’, lvis.LVIS). Defaults to the datasets explicitly supported by Avalanche.default_to_coco – If True, it will try to convert the dataset to the COCO format.
save_folder – path to the folder where to write model output files. Defaults to None, which means that the model output of test instances will not be stored.
filename_prefix – prefix common to all model outputs files. Ignored if save_folder is None. Defaults to “model_output”
iou_types – list of (or a single string) strings describing the iou types to use when computing metrics. Defaults to “bbox”. Valid values are usually “bbox” and “segm”, but this may vary depending on the dataset.
summarize_to_stdout – if True, a summary of evaluation metrics will be printed to stdout (as a table) using the Lvis API. Defaults to True.
Methods
__init__
(*[, evaluator_factory, gt_api_def, ...])Creates an instance of DetectionMetrics.
after_backward
(strategy)after_eval
(strategy)after_eval_dataset_adaptation
(strategy)after_eval_exp
(strategy)after_eval_forward
(strategy)after_eval_iteration
(strategy)after_forward
(strategy)after_train_dataset_adaptation
(strategy)after_training
(strategy)after_training_epoch
(strategy)after_training_exp
(strategy)after_training_iteration
(strategy)after_update
(strategy)before_backward
(strategy)before_eval
(strategy)before_eval_dataset_adaptation
(strategy)before_eval_exp
(strategy)before_eval_forward
(strategy)before_eval_iteration
(strategy)before_forward
(strategy)before_train_dataset_adaptation
(strategy)before_training
(strategy)before_training_epoch
(strategy)before_training_exp
(strategy)before_training_iteration
(strategy)before_update
(strategy)reset
()Resets the metric internal state.
result
()Obtains the value of the metric.
update
(res)Attributes
save_folder
The folder to use when storing the model outputs.
filename_prefix
The file name prefix to use when storing the model outputs.
save_stream
The stream for which the model outputs should be saved.
iou_types
The IoU types for which metrics will be computed.
summarize_to_stdout
If True, a summary of evaluation metrics will be printed to stdout.
evaluator_factory
The factory of the evaluator object.
evaluator
Main evaluator object to compute metrics.
gt_api_def
The name and type of the dataset API object containing the ground truth test annotations.
default_to_coco
If True, it will try to convert the dataset to the COCO format.
current_filename
File containing the current model outputs.
current_outputs
List of dictionaries containing the current model outputs.
current_additional_metrics
The current additional metrics.
save
If True, model outputs will be written to file.