avalanche.training.plugins.GSS_greedyPlugin
- class avalanche.training.plugins.GSS_greedyPlugin(mem_size=200, mem_strength=5, input_size=[])[source]
GSSPlugin replay plugin.
Code adapted from the repository: https://github.com/RaptorMai/online-continual-learning Handles an external memory fulled with samples selected using the Greedy approach of GSS algorithm. before_forward callback is used to process the current sample and estimate a score.
- __init__(mem_size=200, mem_strength=5, input_size=[])[source]
- Parameters:
mem_size – total number of patterns to be stored in the external memory.
mem_strength –
input_size –
Methods
__init__
([mem_size, mem_strength, input_size])- param mem_size:
total number of patterns to be stored
after_backward
(strategy, *args, **kwargs)Called after criterion.backward() by the BaseTemplate.
after_eval
(strategy, *args, **kwargs)Called after eval by the BaseTemplate.
after_eval_dataset_adaptation
(strategy, ...)Called after eval_dataset_adaptation by the BaseTemplate.
after_eval_exp
(strategy, *args, **kwargs)Called after eval_exp by the BaseTemplate.
after_eval_forward
(strategy, *args, **kwargs)Called after model.forward() by the BaseTemplate.
after_eval_iteration
(strategy, *args, **kwargs)Called after the end of an iteration by the BaseTemplate.
after_forward
(strategy[, num_workers, shuffle])After every forward this function select sample to fill the memory buffer based on cosine similarity
after_train_dataset_adaptation
(strategy, ...)Called after train_dataset_adapatation by the BaseTemplate.
after_training
(strategy, *args, **kwargs)Called after train by the BaseTemplate.
after_training_epoch
(strategy, *args, **kwargs)Called after train_epoch by the BaseTemplate.
after_training_exp
(strategy, *args, **kwargs)Called after train_exp by the BaseTemplate.
after_training_iteration
(strategy, *args, ...)Called after the end of a training iteration by the BaseTemplate.
after_update
(strategy, *args, **kwargs)Called after optimizer.update() by the BaseTemplate.
before_backward
(strategy, *args, **kwargs)Called before criterion.backward() by the BaseTemplate.
before_eval
(strategy, *args, **kwargs)Called before eval by the BaseTemplate.
before_eval_dataset_adaptation
(strategy, ...)Called before eval_dataset_adaptation by the BaseTemplate.
before_eval_exp
(strategy, *args, **kwargs)Called before eval_exp by the BaseTemplate.
before_eval_forward
(strategy, *args, **kwargs)Called before model.forward() by the BaseTemplate.
before_eval_iteration
(strategy, *args, **kwargs)Called before the start of a training iteration by the BaseTemplate.
before_forward
(strategy, *args, **kwargs)Called before model.forward() by the BaseTemplate.
before_train_dataset_adaptation
(strategy, ...)Called before train_dataset_adapatation by the BaseTemplate.
before_training
(strategy, **kwargs)Called before train by the BaseTemplate.
before_training_epoch
(strategy, *args, **kwargs)Called before train_epoch by the BaseTemplate.
before_training_exp
(strategy[, num_workers, ...])Dataloader to build batches containing examples from both memories and the training dataset
before_training_iteration
(strategy, *args, ...)Called before the start of a training iteration by the BaseTemplate.
before_update
(strategy, *args, **kwargs)Called before optimizer.update() by the BaseTemplate.
cosine_similarity
(x1[, x2, eps])get_batch_sim
(strategy, grad_dims, batch_x, ...)Args:
get_each_batch_sample_sim
(strategy, ...)Args:
get_grad_vector
(pp, grad_dims)gather the gradients in one vector
get_rand_mem_grads
(strategy, grad_dims, ...)Args:
Attributes
supports_distributed
A flag describing whether this plugin supports distributed training.