Source code for avalanche.training.losses

import copy

import torch
from torch import nn
from avalanche.training.plugins import SupervisedPlugin
from torch.nn import BCELoss
import numpy as np


[docs]class ICaRLLossPlugin(SupervisedPlugin): """ ICaRLLossPlugin Similar to the Knowledge Distillation Loss. Works as follows: The target is constructed by taking the one-hot vector target for the current sample and assigning to the position corresponding to the past classes the output of the old model on the current sample. Doesn't work if classes observed in previous experiences might be observed again in future training experiences. """
[docs] def __init__(self): super().__init__() self.criterion = BCELoss() self.old_classes = [] self.old_model = None self.old_logits = None
def before_forward(self, strategy, **kwargs): if self.old_model is not None: with torch.no_grad(): self.old_logits = self.old_model(strategy.mb_x) def __call__(self, logits, targets): predictions = torch.sigmoid(logits) one_hot = torch.zeros( targets.shape[0], logits.shape[1], dtype=torch.float, device=logits.device, ) one_hot[range(len(targets)), targets.long()] = 1 if self.old_logits is not None: old_predictions = torch.sigmoid(self.old_logits) one_hot[:, self.old_classes] = old_predictions[:, self.old_classes] self.old_logits = None return self.criterion(predictions, one_hot) def after_training_exp(self, strategy, **kwargs): if self.old_model is None: old_model = copy.deepcopy(strategy.model) old_model.eval() self.old_model = old_model.to(strategy.device) self.old_model.load_state_dict(strategy.model.state_dict()) self.old_classes += np.unique( strategy.experience.dataset.targets ).tolist()
class SCRLoss(torch.nn.Module): """ Supervised Contrastive Replay Loss as defined in Eq. 5 of https://arxiv.org/pdf/2103.13885.pdf. Author: Yonglong Tian (yonglong@mit.edu) Date: May 07, 2020 Original GitHub repository: https://github.com/HobbitLong/SupContrast/ LICENSE: BSD 2-Clause License """ def __init__(self, temperature=0.07, contrast_mode='all', base_temperature=0.07): super().__init__() self.temperature = temperature self.contrast_mode = contrast_mode self.base_temperature = base_temperature def forward(self, features, labels=None, mask=None): """Compute loss for model. If both `labels` and `mask` are None, it degenerates to SimCLR unsupervised loss: https://arxiv.org/pdf/2002.05709.pdf features: [bsz, n_views, f_dim] `n_views` is the number of crops from each image, better be L2 normalized in f_dim dimension Args: features: hidden vector of shape [bsz, n_views, ...]. labels: ground truth of shape [bsz]. mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j has the same class as sample i. Can be asymmetric. Returns: A loss scalar. """ device = features.device if len(features.shape) < 3: raise ValueError('`features` needs to be [bsz, n_views, ...],' 'at least 3 dimensions are required') if len(features.shape) > 3: features = features.view(features.shape[0], features.shape[1], -1) batch_size = features.shape[0] if labels is not None and mask is not None: raise ValueError('Cannot define both `labels` and `mask`') elif labels is None and mask is None: mask = torch.eye(batch_size, dtype=torch.float32).to(device) elif labels is not None: labels = labels.contiguous().view(-1, 1) if labels.shape[0] != batch_size: raise ValueError('Num of labels does not match num of features') mask = torch.eq(labels, labels.T).float().to(device) else: mask = mask.float().to(device) contrast_count = features.shape[1] contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) if self.contrast_mode == 'one': anchor_feature = features[:, 0] anchor_count = 1 elif self.contrast_mode == 'all': anchor_feature = contrast_feature anchor_count = contrast_count else: raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) # compute logits anchor_dot_contrast = torch.div( torch.matmul(anchor_feature, contrast_feature.T), self.temperature) # for numerical stability logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) logits = anchor_dot_contrast - logits_max.detach() # tile mask mask = mask.repeat(anchor_count, contrast_count) # mask-out self-contrast cases logits_mask = torch.scatter( torch.ones_like(mask), 1, torch.arange(batch_size * anchor_count).view(-1, 1).to(device), 0 ) mask = mask * logits_mask # compute log_prob exp_logits = torch.exp(logits) * logits_mask log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) # compute mean of log-likelihood over positive mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) # loss loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos loss = loss.view(anchor_count, batch_size).mean() return loss __all__ = ["ICaRLLossPlugin", "SCRLoss"]