Source code for avalanche.training.supervised.er_ace

from typing import Callable, List, Optional, Union

import torch
from torch.nn import CrossEntropyLoss, Module
from torch.optim import Optimizer

from avalanche.core import SupervisedPlugin
from avalanche.models.utils import avalanche_forward
from avalanche.training import ACECriterion
from avalanche.training.plugins.evaluation import (
    EvaluationPlugin,
    default_evaluator,
)
from avalanche.training.storage_policy import ClassBalancedBuffer
from avalanche.training.templates import SupervisedTemplate
from avalanche.training.templates.strategy_mixin_protocol import CriterionType
from avalanche.training.utils import cycle


[docs]class ER_ACE(SupervisedTemplate): """ ER ACE, as proposed in "New Insights on Reducing Abrupt Representation Change in Online Continual Learning" by Lucas Caccia et. al. https://openreview.net/forum?id=N8MaByOzUfb This version is adapted to non-online scenario, the difference with OnlineER_ACE is that it introduces all of the exemples from the new classes in the buffer at the beggining of the task instead of introducing them progressively. """
[docs] def __init__( self, *, model: Module, optimizer: Optimizer, criterion: CriterionType = CrossEntropyLoss(), mem_size: int = 200, batch_size_mem: int = 10, train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: Optional[int] = 1, device: Union[str, torch.device] = "cpu", plugins: Optional[List[SupervisedPlugin]] = None, evaluator: Union[ EvaluationPlugin, Callable[[], EvaluationPlugin] ] = default_evaluator, eval_every=-1, peval_mode="epoch", **kwargs ): """ :param model: PyTorch model. :param optimizer: PyTorch optimizer. :param criterion: loss function. :param mem_size: int : Fixed memory size :param batch_size_mem: int : Size of the batch sampled from the buffer :param train_mb_size: mini-batch size for training. :param train_epochs: number of training epochs. :param eval_mb_size: mini-batch size for eval. :param device: PyTorch device where the model will be allocated. :param plugins: (optional) list of StrategyPlugins. :param evaluator: (optional) instance of EvaluationPlugin for logging and metric computations. None to remove logging. :param eval_every: the frequency of the calls to `eval` inside the training loop. -1 disables the evaluation. 0 means `eval` is called only at the end of the learning experience. Values >0 mean that `eval` is called every `eval_every` epochs and at the end of the learning experience. :param peval_mode: one of {'epoch', 'iteration'}. Decides whether the periodic evaluation during training should execute every `eval_every` epochs or iterations (Default='epoch'). """ super().__init__( model=model, optimizer=optimizer, criterion=criterion, train_mb_size=train_mb_size, train_epochs=train_epochs, eval_mb_size=eval_mb_size, device=device, plugins=plugins, evaluator=evaluator, eval_every=eval_every, peval_mode=peval_mode, **kwargs ) self.mem_size = mem_size self.batch_size_mem = batch_size_mem self.storage_policy = ClassBalancedBuffer( max_size=self.mem_size, adaptive_size=True ) self.replay_loader = None self.ace_criterion = ACECriterion()
def training_epoch(self, **kwargs): """Training epoch. :param kwargs: :return: """ for self.mbatch in self.dataloader: if self._stop_training: break self._unpack_minibatch() self._before_training_iteration(**kwargs) if self.replay_loader is not None: self.mb_buffer_x, self.mb_buffer_y, self.mb_buffer_tid = next( self.replay_loader ) self.mb_buffer_x, self.mb_buffer_y, self.mb_buffer_tid = ( self.mb_buffer_x.to(self.device), self.mb_buffer_y.to(self.device), self.mb_buffer_tid.to(self.device), ) self.optimizer.zero_grad() self.loss = self._make_empty_loss() # Forward self._before_forward(**kwargs) self.mb_output = self.forward() if self.replay_loader is not None: self.mb_buffer_out = avalanche_forward( self.model, self.mb_buffer_x, self.mb_buffer_tid ) self._after_forward(**kwargs) # Loss & Backward if self.replay_loader is None: self.loss += self.criterion() else: self.loss += self.ace_criterion( self.mb_output, self.mb_y, self.mb_buffer_out, self.mb_buffer_y, ) self._before_backward(**kwargs) self.backward() self._after_backward(**kwargs) # Optimization step self._before_update(**kwargs) self.optimizer_step() self._after_update(**kwargs) self._after_training_iteration(**kwargs) def _before_training_exp(self, **kwargs): # Update buffer before training exp so that we have current data in self.storage_policy.update(self, **kwargs) buffer = self.storage_policy.buffer if ( len(buffer) >= self.batch_size_mem and self.experience.current_experience > 0 ): self.replay_loader = cycle( torch.utils.data.DataLoader( buffer, batch_size=self.batch_size_mem, shuffle=True, drop_last=True, ) ) super()._before_training_exp(**kwargs) def _train_cleanup(self): super()._train_cleanup() # reset the value to avoid serialization failures self.replay_loader = None
__all__ = [ "ER_ACE", ]