Source code for avalanche.training.templates.common_templates

import sys
from typing import Callable, Sequence, Optional, TypeVar, Union
import torch

from torch.nn import Module, CrossEntropyLoss
from torch.optim import Optimizer
from avalanche.benchmarks import DatasetExperience

from avalanche.core import BasePlugin, SupervisedPlugin
from avalanche.training.plugins.evaluation import (
    EvaluationPlugin,
    default_evaluator,
)
from avalanche.training.templates.strategy_mixin_protocol import (
    CriterionType,
    SupervisedStrategyProtocol,
    TMBOutput,
    TMBInput,
)

from .observation_type import *
from .problem_type import *
from .update_type import *
from .base_sgd import BaseSGDTemplate


TDatasetExperience = TypeVar("TDatasetExperience", bound=DatasetExperience)


[docs]class SupervisedTemplate( BatchObservation[TDatasetExperience, TMBInput, TMBInput], SupervisedProblem[TDatasetExperience, TMBInput, TMBInput], SGDUpdate[TDatasetExperience, TMBInput, TMBOutput], SupervisedStrategyProtocol[TDatasetExperience, TMBInput, TMBOutput], BaseSGDTemplate[TDatasetExperience, TMBInput, TMBOutput], ): """Base class for continual learning strategies. SupervisedTemplate is the super class of all supervised task-based continual learning strategies. It implements a basic training loop and callback system that allows to execute code at each experience of the training loop. Plugins can be used to implement callbacks to augment the training loop with additional behavior (e.g. a memory buffer for replay). **Scenarios** This strategy supports several continual learning scenarios: * class-incremental scenarios (no task labels) * multi-task scenarios, where task labels are provided) * multi-incremental scenarios, where the same task may be revisited The exact scenario depends on the data stream and whether it provides the task labels. **Training loop** The training loop is organized as follows:: train train_exp # for each experience adapt_train_dataset train_dataset_adaptation make_train_dataloader train_epoch # for each epoch # forward # backward # model update **Evaluation loop** The evaluation loop is organized as follows:: eval eval_exp # for each experience adapt_eval_dataset eval_dataset_adaptation make_eval_dataloader eval_epoch # for each epoch # forward """ PLUGIN_CLASS = SupervisedPlugin # TODO: remove default values of model and optimizer when legacy positional arguments are definitively removed
[docs] def __init__( self, *, model: Module, optimizer: Optimizer, criterion: CriterionType = CrossEntropyLoss(), train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: Optional[int] = 1, device: Union[str, torch.device] = "cpu", plugins: Optional[Sequence[BasePlugin]] = None, evaluator: Union[ EvaluationPlugin, Callable[[], EvaluationPlugin] ] = default_evaluator, eval_every=-1, peval_mode="epoch", **kwargs, ): """Init. :param model: PyTorch model. :param optimizer: PyTorch optimizer. :param criterion: loss function. :param train_mb_size: mini-batch size for training. The default dataloader is a task-balanced dataloader that divides each mini-batch evenly between samples from all existing tasks in the dataset. :param train_epochs: number of training epochs. :param eval_mb_size: mini-batch size for eval. :param device: PyTorch device where the model will be allocated. :param plugins: (optional) list of StrategyPlugins. :param evaluator: (optional) instance of EvaluationPlugin for logging and metric computations. None to remove logging. :param eval_every: the frequency of the calls to `eval` inside the training loop. -1 disables the evaluation. 0 means `eval` is called only at the end of the learning experience. Values >0 mean that `eval` is called every `eval_every` epochs and at the end of the learning experience. :param peval_mode: one of {'epoch', 'iteration'}. Decides whether the periodic evaluation during training should execute every `eval_every` epochs or iterations (Default='epoch'). """ kwargs["model"] = model kwargs["optimizer"] = optimizer kwargs["criterion"] = criterion kwargs["train_mb_size"] = train_mb_size kwargs["train_epochs"] = train_epochs kwargs["eval_mb_size"] = eval_mb_size kwargs["device"] = device kwargs["plugins"] = plugins kwargs["evaluator"] = evaluator kwargs["eval_every"] = eval_every kwargs["peval_mode"] = peval_mode if sys.version_info >= (3, 11): super().__init__(**kwargs) else: super().__init__() BaseSGDTemplate.__init__(self=self, **kwargs)
class SupervisedMetaLearningTemplate( BatchObservation[TDatasetExperience, TMBInput, TMBInput], SupervisedProblem[TDatasetExperience, TMBInput, TMBInput], MetaUpdate[TDatasetExperience, TMBInput, TMBInput], BaseSGDTemplate[TDatasetExperience, TMBInput, TMBOutput], ): """Base class for continual learning strategies. SupervisedMetaLearningTemplate is the super class of all supervised meta-learning task-based continual learning strategies. It implements a basic training loop and callback system that allows to execute code at each experience of the training loop. Plugins can be used to implement callbacks to augment the training loop with additional behavior (e.g. a memory buffer for replay). **Scenarios** This strategy supports several continual learning scenarios: * class-incremental scenarios (no task labels) * multi-task scenarios, where task labels are provided) * multi-incremental scenarios, where the same task may be revisited The exact scenario depends on the data stream and whether it provides the task labels. **Training loop** The training loop is organized as follows:: train train_exp # for each experience adapt_train_dataset train_dataset_adaptation make_train_dataloader train_epoch # for each epoch # inner_updates # outer_update **Evaluation loop** The evaluation loop is organized as follows:: eval eval_exp # for each experience adapt_eval_dataset eval_dataset_adaptation make_eval_dataloader eval_epoch # for each epoch # forward """ PLUGIN_CLASS = SupervisedPlugin # TODO: remove default values of model and optimizer when legacy positional arguments are definitively removed def __init__( self, *, model: Module, optimizer: Optimizer, criterion: CriterionType = CrossEntropyLoss(), train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: Optional[int] = 1, device: Union[str, torch.device] = "cpu", plugins: Optional[Sequence[BasePlugin]] = None, evaluator: Union[ EvaluationPlugin, Callable[[], EvaluationPlugin] ] = default_evaluator, eval_every=-1, peval_mode="epoch", **kwargs, ): """Init. :param model: PyTorch model. :param optimizer: PyTorch optimizer. :param criterion: loss function. :param train_mb_size: mini-batch size for training. The default dataloader is a task-balanced dataloader that divides each mini-batch evenly between samples from all existing tasks in the dataset. :param train_epochs: number of training epochs. :param eval_mb_size: mini-batch size for eval. :param device: PyTorch device where the model will be allocated. :param plugins: (optional) list of StrategyPlugins. :param evaluator: (optional) instance of EvaluationPlugin for logging and metric computations. None to remove logging. :param eval_every: the frequency of the calls to `eval` inside the training loop. -1 disables the evaluation. 0 means `eval` is called only at the end of the learning experience. Values >0 mean that `eval` is called every `eval_every` epochs and at the end of the learning experience. :param peval_mode: one of {'epoch', 'iteration'}. Decides whether the periodic evaluation during training should execute every `eval_every` epochs or iterations (Default='epoch'). """ kwargs["model"] = model kwargs["optimizer"] = optimizer kwargs["criterion"] = criterion kwargs["train_mb_size"] = train_mb_size kwargs["train_epochs"] = train_epochs kwargs["eval_mb_size"] = eval_mb_size kwargs["device"] = device kwargs["plugins"] = plugins kwargs["evaluator"] = evaluator kwargs["eval_every"] = eval_every kwargs["peval_mode"] = peval_mode if sys.version_info >= (3, 11): super().__init__(**kwargs) else: super().__init__() BaseSGDTemplate.__init__(self=self, **kwargs) __all__ = [ "SupervisedTemplate", "SupervisedMetaLearningTemplate", ]