avalanche.training.ExpertGateStrategy
- class avalanche.training.ExpertGateStrategy(*, model: ~torch.nn.modules.module.Module, optimizer: ~torch.optim.optimizer.Optimizer, criterion: ~torch.nn.modules.module.Module | ~typing.Callable[[~torch.Tensor, ~torch.Tensor], ~torch.Tensor] = CrossEntropyLoss(), train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: int | None = None, device=None, plugins: ~typing.List[~avalanche.core.SupervisedPlugin] | None = None, evaluator: ~avalanche.training.plugins.evaluation.EvaluationPlugin = <function default_evaluator>, eval_every=-1, ae_train_mb_size=1, ae_train_epochs=2, ae_latent_dim=100, ae_lr=0.001, temp=2, rel_thresh=0.85, **base_kwargs)[source]
Expert Gate strategy. New experts are trained and added to the model as tasks are learned sequentially.
Technique introduced in: ‘Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert gate: Lifelong learning with a network of experts.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.’ https://arxiv.org/abs/1611.06194
To use this strategy you need to instantiate an ExpertGate model. See the ExpertGate plugin for more details.
- __init__(*, model: ~torch.nn.modules.module.Module, optimizer: ~torch.optim.optimizer.Optimizer, criterion: ~torch.nn.modules.module.Module | ~typing.Callable[[~torch.Tensor, ~torch.Tensor], ~torch.Tensor] = CrossEntropyLoss(), train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: int | None = None, device=None, plugins: ~typing.List[~avalanche.core.SupervisedPlugin] | None = None, evaluator: ~avalanche.training.plugins.evaluation.EvaluationPlugin = <function default_evaluator>, eval_every=-1, ae_train_mb_size=1, ae_train_epochs=2, ae_latent_dim=100, ae_lr=0.001, temp=2, rel_thresh=0.85, **base_kwargs)[source]
Init.
- Parameters:
model – PyTorch model.
optimizer – PyTorch optimizer.
criterion – loss function.
train_mb_size – mini-batch size for training.
train_epochs – number of training epochs.
eval_mb_size – mini-batch size for eval.
device – PyTorch device where the model will be allocated.
plugins – (optional) list of StrategyPlugins.
evaluator – (optional) instance of EvaluationPlugin for logging and metric computations. None to remove logging.
eval_every – the frequency of the calls to eval inside the training loop. -1 disables the evaluation. 0 means eval is called only at the end of the learning experience. Values >0 mean that eval is called every eval_every epochs and at the end of the learning experience.
base_kwargs – any additional
ae_train_mb_size – mini-batch size for training of the autoencoder
ae_train_epochs – number of training epochs for the autoencoder
ae_lr – the learning rate for the autoencoder training
using vanilla SGD :param temp: the temperature hyperparameter when selecting the expert during the forward method
BaseTemplate
constructor arguments.
Methods
__init__
(*, model, optimizer[, criterion, ...])Init.
backward
()Run the backward pass.
check_model_and_optimizer
([...])criterion
()Loss function for supervised problems.
eval
(exp_list, **kwargs)Evaluate the current model on a series of experiences and returns the last recorded value for each metric.
eval_dataset_adaptation
(**kwargs)Initialize self.adapted_dataset.
eval_epoch
(**kwargs)Evaluation loop over the current self.dataloader.
forward
()Compute the model's output given the current mini-batch.
make_eval_dataloader
([num_workers, shuffle, ...])Initializes the eval data loader. :param num_workers: How many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0). :param pin_memory: If True, the data loader will copy Tensors into CUDA pinned memory before returning them. Defaults to True. :param kwargs: :return:.
make_optimizer
([reset_optimizer_state, ...])Optimizer initialization.
make_train_dataloader
([num_workers, ...])Data loader initialization.
model_adaptation
([model])Adapts the model to the current data.
optimizer_step
()Execute the optimizer step (weights update).
stop_training
()Signals to stop training at the next iteration.
train
(experiences[, eval_streams])Training loop.
train_dataset_adaptation
(**kwargs)Initialize self.adapted_dataset.
training_epoch
(**kwargs)Training epoch.
Attributes
is_eval
True if the strategy is in evaluation mode.
mb_task_id
Current mini-batch task labels.
mb_x
Current mini-batch input.
mb_y
Current mini-batch target.
mbatch
Current mini-batch.
mb_output
Model's output computed on the current mini-batch.
dataloader
Dataloader.
optimizer
PyTorch optimizer.
loss
Loss of the current mini-batch.
train_epochs
Number of training epochs.
train_mb_size
Training mini-batch size.
eval_mb_size
Eval mini-batch size.
retain_graph
Retain graph when calling loss.backward().
evaluator
EvaluationPlugin used for logging and metric computations.
clock
Incremental counters for strategy events.
adapted_dataset
Data used to train.
model
PyTorch model.
device
PyTorch device where the model will be allocated.
plugins
List of `SupervisedPlugin`s. .
experience
Current experience.
is_training
True if the strategy is in training mode.
current_eval_stream
Current evaluation stream.