avalanche.training.Naive

class avalanche.training.Naive(model: torch.nn.modules.module.Module, optimizer: torch.optim.optimizer.Optimizer, criterion=CrossEntropyLoss(), train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: typing.Optional[int] = None, device=None, plugins: typing.Optional[typing.List[avalanche.core.SupervisedPlugin]] = None, evaluator: avalanche.training.plugins.evaluation.EvaluationPlugin = <avalanche.training.plugins.evaluation.EvaluationPlugin object>, eval_every=-1, **base_kwargs)[source]

Naive finetuning.

The simplest (and least effective) Continual Learning strategy. Naive just incrementally fine tunes a single model without employing any method to contrast the catastrophic forgetting of previous knowledge. This strategy does not use task identities.

Naive is easy to set up and its results are commonly used to show the worst performing baseline.

__init__(model: torch.nn.modules.module.Module, optimizer: torch.optim.optimizer.Optimizer, criterion=CrossEntropyLoss(), train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: typing.Optional[int] = None, device=None, plugins: typing.Optional[typing.List[avalanche.core.SupervisedPlugin]] = None, evaluator: avalanche.training.plugins.evaluation.EvaluationPlugin = <avalanche.training.plugins.evaluation.EvaluationPlugin object>, eval_every=-1, **base_kwargs)[source]

Creates an instance of the Naive strategy.

Parameters
  • model – The model.

  • optimizer – The optimizer to use.

  • criterion – The loss criterion to use.

  • train_mb_size – The train minibatch size. Defaults to 1.

  • train_epochs – The number of training epochs. Defaults to 1.

  • eval_mb_size – The eval minibatch size. Defaults to 1.

  • device – The device to use. Defaults to None (cpu).

  • plugins – Plugins to be added. Defaults to None.

  • evaluator – (optional) instance of EvaluationPlugin for logging and metric computations.

  • eval_every – the frequency of the calls to eval inside the training loop. -1 disables the evaluation. 0 means eval is called only at the end of the learning experience. Values >0 mean that eval is called every eval_every epochs and at the end of the learning experience.

  • base_kwargs – any additional BaseTemplate constructor arguments.

Methods

__init__(model, optimizer[, criterion, ...])

Creates an instance of the Naive strategy.

backward()

Run the backward pass.

criterion()

Loss function.

eval(exp_list, **kwargs)

Evaluate the current model on a series of experiences and returns the last recorded value for each metric.

eval_dataset_adaptation(**kwargs)

Initialize self.adapted_dataset.

eval_epoch(**kwargs)

Evaluation loop over the current self.dataloader.

forward()

Compute the model's output given the current mini-batch.

make_eval_dataloader([num_workers, ...])

Initializes the eval data loader. :param num_workers: How many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0). :param pin_memory: If True, the data loader will copy Tensors into CUDA pinned memory before returning them. Defaults to True. :param kwargs: :return:.

make_optimizer()

Optimizer initialization.

make_train_dataloader([num_workers, ...])

Data loader initialization.

model_adaptation([model])

Adapts the model to the current data.

optimizer_step()

Execute the optimizer step (weights update).

stop_training()

Signals to stop training at the next iteration.

train(experiences[, eval_streams])

Training loop.

train_dataset_adaptation(**kwargs)

Initialize self.adapted_dataset.

training_epoch(**kwargs)

Training epoch.

Attributes

is_eval

True if the strategy is in evaluation mode.

mb_task_id

Current mini-batch task labels.

mb_x

Current mini-batch input.

mb_y

Current mini-batch target.