avalanche.training.plugins.FromScratchTrainingPlugin
- class avalanche.training.plugins.FromScratchTrainingPlugin(reset_optimizer: bool = True)[source]
From Scratch Training Plugin.
This plugin resets the strategy’s model weights and optimizer state after each experience. It expects the strategy to have a single model and optimizer. It can be used with the Naive strategy to produce “from-scratch training” baselines.
- __init__(reset_optimizer: bool = True)[source]
Creates a FromScratchTrainingPlugin instance.
- Parameters:
reset_optimizer – if True, the startegy’s optimizer state is reset after each experience.
Methods
__init__
([reset_optimizer])Creates a FromScratchTrainingPlugin instance.
after_backward
(strategy, *args, **kwargs)Called after criterion.backward() by the BaseTemplate.
after_eval
(strategy, *args, **kwargs)Called after eval by the BaseTemplate.
after_eval_dataset_adaptation
(strategy, ...)Called after eval_dataset_adaptation by the BaseTemplate.
after_eval_exp
(strategy, *args, **kwargs)Called after eval_exp by the BaseTemplate.
after_eval_forward
(strategy, *args, **kwargs)Called after model.forward() by the BaseTemplate.
after_eval_iteration
(strategy, *args, **kwargs)Called after the end of an iteration by the BaseTemplate.
after_forward
(strategy, *args, **kwargs)Called after model.forward() by the BaseTemplate.
after_train_dataset_adaptation
(strategy, ...)Called after train_dataset_adapatation by the BaseTemplate.
after_training
(strategy, *args, **kwargs)Called after train by the BaseTemplate.
after_training_epoch
(strategy, *args, **kwargs)Called after train_epoch by the BaseTemplate.
after_training_exp
(strategy, *args, **kwargs)Called after train_exp by the BaseTemplate.
after_training_iteration
(strategy, *args, ...)Called after the end of a training iteration by the BaseTemplate.
after_update
(strategy, *args, **kwargs)Called after optimizer.update() by the BaseTemplate.
before_backward
(strategy, *args, **kwargs)Called before criterion.backward() by the BaseTemplate.
before_eval
(strategy, *args, **kwargs)Called before eval by the BaseTemplate.
before_eval_dataset_adaptation
(strategy, ...)Called before eval_dataset_adaptation by the BaseTemplate.
before_eval_exp
(strategy, *args, **kwargs)Called before eval_exp by the BaseTemplate.
before_eval_forward
(strategy, *args, **kwargs)Called before model.forward() by the BaseTemplate.
before_eval_iteration
(strategy, *args, **kwargs)Called before the start of a training iteration by the BaseTemplate.
before_forward
(strategy, *args, **kwargs)Called before model.forward() by the BaseTemplate.
before_train_dataset_adaptation
(strategy, ...)Called before train_dataset_adapatation by the BaseTemplate.
before_training
(strategy, *args, **kwargs)Called before train by the BaseTemplate.
before_training_epoch
(strategy, *args, **kwargs)Called before train_epoch by the BaseTemplate.
before_training_exp
(strategy, *args, **kwargs)Called after train_exp by the BaseTemplate.
before_training_iteration
(strategy, *args, ...)Called before the start of a training iteration by the BaseTemplate.
before_update
(strategy, *args, **kwargs)Called before optimizer.update() by the BaseTemplate.
Attributes
supports_distributed
A flag describing whether this plugin supports distributed training.