Source code for avalanche.models.helper_method

#!/usr/bin/env python3
import torch
import torch.nn as nn

from avalanche.models.dynamic_modules import (

class MultiTaskDecorator(MultiTaskModule):
    Encapsulates an existing nn.Module to make it subclass MultiTaskModule,
    the user should still be able to interact with the encapsulated module
    as if it was the module itself.

    The only things that change are the following, the classifier from the
    given model will be replaced by a MultiHeadClassifier, and the forward()
    implementation will be overwritten by one that accepts task labels.
    The encapsulated module will then be automatically extended to
    fit new classes during calls to model.adaptation()

    def __init__(self, model: nn.Module, classifier_name: str):
        :param model: pytorch nn.Module that does not support multitask
        :param classifier_name: attribute name of the existing classification
                                layer inside the module
        self.__dict__["_initialized"] = False
        self.model = model
        self.classifier_name = classifier_name

        old_classifier = getattr(model, classifier_name)

        if isinstance(old_classifier, nn.Linear):
            in_size = old_classifier.in_features
            out_size = old_classifier.out_features
            old_params = [
                torch.clone( for p in old_classifier.parameters()
            # Replace old classifier by empty block
            setattr(self.model, classifier_name, nn.Sequential())
        elif isinstance(old_classifier, nn.Sequential):
            in_size = old_classifier[-1].in_features
            out_size = old_classifier[-1].out_features
            old_params = [
                torch.clone( for p in old_classifier[-1].parameters()
            del old_classifier[-1]
            raise NotImplementedError(
                f"Cannot handle the following type \
            of classification layer {type(old_classifier)}"

        # Set new classifier and initialize to previous param values
        setattr(self, classifier_name, MultiHeadClassifier(in_size, out_size))

        for param, param_old in zip(
            getattr(self, classifier_name).parameters(), old_params
   = param_old

        self.max_class_label = max(self.max_class_label, out_size)
        self._initialized = True

    def forward_single_task(self, x: torch.Tensor, task_label: int):
        out = self.model(x)
        return getattr(self, self.classifier_name)(
            out.view(out.size(0), -1), task_labels=task_label

    def __getattr__(self, name):
        # Override pytorch impl from nn.Module

        # Its a bit particular since pytorch nn.Module does not
        # keep some attributes in a classical manner in self.__dict__
        # rather it puts them into _parameters, _buffers and
        # _modules attributes. We have to add these lines to avoid recursion
        if name == "model":
            return self.__dict__["_modules"]["model"]
        if name == self.classifier_name:
            return self.__dict__["_modules"][self.classifier_name]

        # If its a different attribute, return the one from the model
        return getattr(self.model, name)

    def __setattr__(self, name, value):
        # During initialization, use pytorch routine
        if not self.__dict__["_initialized"] or name in self.__dict__:
            super().__setattr__(name, value)
            return setattr(self.model, name, value)

[docs]def as_multitask(model: nn.Module, classifier_name: str) -> MultiTaskModule: """Wraps around a model to make it a multitask model. :param model: model to be converted into MultiTaskModule :param classifier_name: the name of the attribute containing the classification layer (nn.Linear). It can also be an instance of nn.Sequential containing multiple layers as long as the classification layer is the last layer. :return: the decorated model, now subclassing MultiTaskModule, and accepting task_labels as forward() method argument """ return MultiTaskDecorator(model, classifier_name)
__all__ = ["as_multitask"]